Foreword

This document is intended to be a general technical reference for the features and capabilities of Haiku’s integrated
debugger, and how to use them. This will entail walking through the different user interface features, how they work,
and how best to potentially make use of them. It should be noted that most of the capabilities described herein require
the target binary to be built with DWARF debugging information. If this is not the case, only a very limited subset of
these capabilities will be available. Unless otherwise indicated, this document represents the most current set of
capabilities available in the official Haiku tree.

Last Updated: 2075-07-25 00:01:15 -0400

Table of Contents

Teams Window
Team Window
Thread List
Stack Trace View
Images
Breakpoints
Execution Control
Source View
Breakpoint condition configuration

Variables View
Registers View
Output Capture View
Main Window Menus
Team Settings Window

Signals
Images

Exceptions
Inspector Window

Editing Memory
Advanced Topics
Expression Evaluation
Special System Type Handling
Return values
Separate Debug Information Files

Page 1

Teams Window

[[] Teams [

| Name ID

T RETTTET_esan L

By /boot/system/serversireqistrar 555
&h /boot/system/servers/debug_server 562
i /boot/system/serversipackage daemon 563
[Q fboot/system/servers/net_server 564
ﬁ {boot/system/servers/app_server 365

£ /boot/system/servers/syslog_daemon 592
4% /boot/system/serversfinput_server [1 start new team
&3 /boot/system/servers/mount_server
i /boot/system/Tracker

fﬁ [bootfsystem/Deskbar Path: |ppsfdebugber{Debugger|

g /boot/system/servers/media_server

Set new team parameters below,

/boot/system/servers/midi_server FTGUMmEALS] |dedithterdEdit |

!i_a,-@ {boot/system/servers/print_server | e H Ehat o ‘

& /boot/system/serversicddb_daemon

& /boot/system/serversinotification_server
& /boot/system/servers/power_daemon

& /boot/system/serversimedia_addon_server
ﬁi {boot/system/appsiVisionfvision

& /boot/system/apps/Terminal

&% /binibash -

Iboot/system/apps/Pe/Pe

58 fbooﬂsystemfeppsf'Debugger

Attach Start new team...

Starting the debugger without any command line arguments will cause it to start by showing you the Teams window
seen above on the left. This allows you to view the teams currently running, and select/attach to one if desired. If the
team in question is one that is intended to be freshly started for this debugging session, then clicking the “Start new
team” button will lead to the window shown on the right, where one can choose a path to the target executable, as well
as any (optional) command line arguments that should be passed in when loading it.

Page 2

Team Window

[] [Data/develihaiku/generated-gccdpm/objects/haiku/x86/debug 1/apps/debugger/Debugger (1192)

| Debugger Team Edit Tools

Threads Images Breakpoints | :
ID | State Name Stop reason
1182 Running Debugger
1193 Running team 1192 debug task
1255 Debugged worker
1256 Running DebugReportGenerator
1257 Running team 1253 debug listener
1258 Running team debugger
1260 Running output worker
1279 Running w=>/Data/develthaiku/gener...

Run Step over] I Step into | Step out

File: /Data/devel/haiku/src/appsidebugger/dwarf/DwarfFile.cpp
break;

& CFA_CFA_RULE_UNDEFINED:
ault:
o return B_BAD_VALUE:

P

TRACE_CFI(" frame address: %" B_PRIx64 "\n", frameAddress):

I rrules
(uint3 =0; 1 < registerCount; i++) {
TRACE_CFI(" reg %" B_PRIU32 "\n", 1)

] uint32 valueType = outputInterface-=RegisterValueType(i):
L4 if (valueType ==
continue;

CfaRule* rule = context.ReqisterRule(i);
if (rule == NULL)
continue;

{

TRACE CFI(" -> CFA_RULE SAl

= VALUE\R"):

ant value;

B T e O BTy SRS 0 T

Frame IP | Function
0x79d68b40 Ox16f6a44 DwarfFile::_UnwindCallFrame({CompilationUni...
0x79d68bal 0x16f32b3 DwarfFile::UnwindCallFrame({CompilationUnit...
0x79dB68ce0 0x162fa4d DwarflmageDebuginfo::CreateFrame(lmage...
0x79d68d60 Ox160e414 Architecture:CreateStackTrace(Team® Ima...
0x79d68de0 0x165c021 GetStackTracejob::Dolvoid) + Ox77
0x79d68220 0xl6cc283 Worker:_Processjobs(void) + Ox13d
0x79d68e50 Ox16ccOcl Worker:_WorkerLoop(void) + 0x19
0x79d68e70 Oxl6cc09a Worker::_WorkerLoopEntry(veid®) + Ox18
0x79d68298 0x13ad0c9 thread_entry + 0x19

0 0x6162a250 commpage_thread exit + 0

variables | Registers
Variable | Value | Type L3
@ this 0x187b1218 DwariFile*
Bad unit 0x188b3940 CompilationUnit*
addressSize 4 unsigned char
subprogramEntry 0x18901cl0 DIESubprogram*
location 70720 long long unsigne...
info 0x187be640 const DwarfFile::F,
inputinterface 0x19585078 const DwarfTarge...

0x195850d8 DwarfTargetinterf...
0x79d68cl0 target_addr té&

currentFrameSection 0x187b8fd0 ElfSection*
dataReader [@ Ox79d68a... DataReader
dwarfs4 false bool
length 64 long long unsigne...
lengthoffset 3016 long long unsigne...

E context [@ Ox79d689... CfaContext

cisAugmentation [@ 0x79d68a... DwarfFile:CIEAUg...
cieReader [@ 0x79d68a... DataReader

cieRemaining 7 longlong int

error 0 longint

registerCount 39 long unsigned int

fdeAugmentation [@ 0x79d68a.,. DwarfFile:FDEAUgG. ., Ld

remaining 47 long long unsigne...
restrictedReader [@ Ox79d68a... DataReader

frameAddress 1920672032 long long unsigne...

E_rcfarfaBula Nl Bafia0n Ffarfalulat ok

|_| Stdout
Stderr

| Clear

After a team has been either created or attached to, a window like the above will be opened. In order to illustrate

several features, this window is in a state resulting from having already started execution and stopped at a breakpoint.
Here we can see most of the main functional areas of the debugger, which will now be detailed individually. The top of
the window is grouped into three tabs, the first of which is the Threads tab, which exposes the following functionality.

Page 3

Thread List

Threads

8]
1192
1193
1255
1256
1257
1258
1260
1279

Images Breakpoints
State Mame | Stop reason
'Ruhning DebUgger ' '
Running team 1192 debug task
Debugged worker
Running DebugReportGenerator
Running team 1253 debug listener
Running team debugger
Running output worker
Running w=/Data/devel/haiku/gener...

This view shows a list of the threads that currently exist in the team, as well as their respective states, which be one of
Running, Debugged or Exception. Selecting a thread here establishes it as the active thread of interest, which, if the

thread is not in a running state, also causes its stack trace to be made visible as well as its topmost stack frame.

Page 4

Stack Trace View

_ Frame | IF | Function |
Ox78d68b40 Oxl&f6add DwarfFile::_UnwindCallFramelCompilationUni...
Ox78d68bal 0x16f32b3 DwarfFile:UnwindCallFrame(CompilationUnit...
Ox79d68ccD Oxl62fadd DwarfimageDebuginfo::CreateFrame(image...
Ox78d68d60 Ox160e414 Architecture::CreateStackTrace(Team®*, Ima...
Ox79d&8den OxlE5c02]1 GetStackTracelob:Dolvoid) + 077
Ox78d68e20 Oxl6cc283 Worker:: Processjobs(void) + Ox13d
Ox79d68e50 Oxl6ccOcl Worker: WorkerLooplvoid) + Ox19
Ox79dE8e70 OxlGcc09a Worker: WorkerLoopEntry(void*) + 0x18
Ox79d68e98 Oxl13ad0c® thread_entry + Ox19

0 O0x6162a250 commpage thread exit + 0

This view shows a stopped thread’s active stack trace, and lets you select which frame is currently of interest, which in
turn will cause other views to update accordingly (i.e. the variables/registers views will switch over to that frame’s
state, and the source view will jump to the appropriate line of execution.

Page 5

Images

The Images Tab contains two views, allowing the user to browse the list of loaded executable images, and select
functions within.

Threads

D |

7530
7528
7529
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541

1=V e

Images
Name

!Dataf'deueUhaikujgenerated-gccdpm!objects!haikujksﬁfdebug_1fappsfdebuggerff

commpage

jboot/system/runtime_loader
/bootfsystem/lib/libncurses,so.5.9.0
Jboot/system/libjlibstdc++.50.6.0.19
/bootfsystem/lib/libbe so

/bootfsystem/libjlibpackage.so DwarfFile:
/boot/system/lib/libtracker. so =t DwarfFile:
/boot/system/lib/libbsd.so DwarfFile:
/bootfsystem/lib/libdebug. so DwarfFile
/boot/system/lib/libroot.so Dwarm
/bootfsystem/lib/libgce_s.so.l DwarfFile:
DwarfFile:

Jboot/system/lib/libicudata.so.55.1
Jboot/system/lib/libicuil 8n.s0.55.1

e atieuet o dibdlibicois s G5 1

Breakpoints
[4] | | File/Function

0OEHEHE

e

UeBUgInToERTrY.h
DwarfExpressionEvaluator.cpp
DwarfExpressionEvaluator.h
DwarfFile.cpp
AutoSectionPutter:AutoSectionPutter(ElfFile*, EfSection®)
AutoSectionPutter:~AutoSectionPutter{void)
:CIEAUgmentation:
:CIEAugmentation:
:CIEAugmentation:
1:CIEAugmentation:
enCIEAUgmentation:
:CIEAugmentation:
:CIEAugmentation:

:CIEAUgmentation(void)
:FDEAddressOffset(ElfFile*, ElfSection*)
:FDEAddressType(void)

:HasData(void)

:Init{DataReaderé:)

:Read(DataReaderé:)
:ReadEncodedAddress(DataReaderé, ElfFilet |

| >

= “ Filter

The left view contains the a list of all images currently loaded. Selecting one causes the view on the right to show a list
of all functions found within that image, organized hierarchically by source location. In the case of an image without
debug information available, this consists simply of a list of all symbols found in the image. Selecting a function makes
it visible in the source view, where one can then e.g. set breakpoints or ask to execute to that point.

As the list of functions can often be large/unwieldy for complex code, the functions list allows a partial match filter to be
applied to reduce the list to the functions of interest:

.| File/Function
B /Data/devel/haiku/srcfapps/debugger/dwarf/DwarfFile.cpp
i:_FindLocationExpression(CompilationUnit*, uint64, target_addr_t, const void#&,

Filter:

DwarfFile
DwarfFile
DwarfFile
DwarfFile
DwarfFile
DwarfFile
DwarfFile
DwarfFile
DwarfFile
DwarfFile
DwarfFile
DwarfFile

ii_FinishUnit(BaseUnit*)
_GetabbreviationTable(off t, AbbreviationTable &)
i_GetContainingCompilationUnit{off t)
i:_GetContainingFDEInfol(target_addr_t)

»_GetContainingFDEINfoltarget_addr t, const DwarfFile:: FDEInfolList &)

i:_GetDebuglnfoPath(const char* BStringé)

1_GetlocationExpression{CompilationUnit*, const LocationDescription®, target_a:

i_GetTypeUnit{uintg4d)
ii_LocateDebuginfo(BStringé&, const char#)

i:_ParseClEHeader(ElfSection*, bool, CompilationUnit#, uint8, CfaContexté, off t, |

v ParseComupilationlnit{Compilationlinit*)

w

> |

DwarfFile::

Page 6

Breakpoints

Threads Images | Breakpoints |
| state | Location | File:Line/Address 4| Condition
Enabled write at Ox71f4dee0 (4 bytes)
Enabled DwarfFile:_UnwindCallFrame(CompilationUnit*, uint8, DIESubprogram®, target_addr_ t, c... DwarfFile.cpp:1984
Enabled DwarfFile::_UnwindCallFrame(CompilationUnit*, uint8, DIESubprogram®, target_addr t, c... DwarfFile.cpp:1989
Enabled

DwarfFile::_UnwindCallFrame(CompilationUnit#, uint8, DIESubprogram#, target_addr t, c... DwarfFile.cpp:1998 i

| Remove Edit... | Disable

The breakpoints tab shows the list of currently installed breakpoints, their locations, and their states. Breakpoints can
optionally have an expression applied to them, which causes the breakpoint to only be triggered if said expression
evaluates to a non-zero result (i.e. if a particular variable in the function has a certain value, such as “i == 5”). In
addition, the list will also show any installed memory watchpoints, as shown above.

Page 7

Execution Control

Run | | Step over | | Stepinto | | Step out |

If a thread is currently stopped, its execution can be manipulated via the above buttons, and their corresponding
keyboard shortcuts (F5, F10, F11 and shift-F11 respectively). If the thread is running, the button corresponding to Run
will instead read Debug, allowing you to halt its execution wherever it currently may be. These buttons are visible
regardless of which tab is selected from the top tab group.

Page 8

Source View

File: /Data/develfhaiku/srcfapps/debugger/dwarf/DwarfFile. cpp

[2]

L] return error;
break:
1

case CFA_CFA_RULE UNDEFINED:
default:
] return B_BAD VALUE;
¥

TRACE_CFI(" frame address: %" B_PRIxS4 "“n", frameAddress);

¢ apply the register rules
for (uint32 1 = 0; 1 =< registerCount; i+) {
TRACE CFI(" reg %" B PRIU32 "\n", 1);

uint32 valueType = outputInterface-=RegisterValueType(i):
if (valueType == 0!
continue;

3o

CfaRule* rule = context.RegisterRule(i);
if (rule == NULL) i
continue;

ff apply the rule
switch (rule-=Type()) {
case CFA_RULE_SAME VALLE:

{
TRACE CFI(" -> CFA_RULE_SAME VALUE\Rn");

(=T AL Y S Lo .-

The source view shows the currently active source code (or that which was most recently selected via either a stack
trace or the image/function list). In the example pictured above, execution is currently stopped at the line highlighted in
turquoise. Also pictured are the several types of supported breakpoints:

[] Standard breakpoint. Always halts execution when encountered.

Disabled breakpoint. While tracked and persisted in settings, it won’t actually be triggered during
o execution while in this state. This state can be toggled by hovering over the breakpoint marker and left
clicking while holding the shift key.

Conditional breakpoint. These have an expression associated with them, and will only trigger if that
& expression evaluates to a non-zero result at the point when they’re encountered. Conditions can be
configured by right clicking a breakpoint marker.

Left-clicking any of the dotted gray line markers on the left allows a breakpoint to be installed, while clicking an existing
breakpoint causes that breakpoint to be removed.

Page 9

The source view also has some functionality accessible by right clicking anywhere in the actual text area:

Open source file
Show disassembly

Fun to cursor
Set next statement

As its name implies, the “Open source file” menu item opens the currently visible source file in the preferred editor
configured in the system file types. “Show disassembly” allows one to switch to a view of the low level disassembly
version of the function which is currently selected, as this can sometimes be useful.

The remaining two items allow manipulation of execution. “Run to cursor” indicates that the current thread should
continue execution until it encounters the source line at which the cursor was right clicked. “Set next statement” on the
other hand, allows one to force the current instruction pointer to the line in question. For example, if one steps over a
line of code, and the evaluated result/effect on local variables is not what was expected, this can be used to step the
instruction pointer back to that line and execute the function again, perhaps stepping into it to evaluate what happened
in further detail (assuming the function hasn’t already modified something which will affect its behavior when being
executed again). Note that this functionality should generally be used with great care, and only by as few lines as
necessary, as the stack pointer may be modified by some lines, especially when switching in and out a scope block;
crossing such a boundary could potentially cause program execution to crash or otherwise exhibit undefined behavior
due to the stack pointer no longer being correct.

It should also be noted that the top row of the source view which displays the location of the current source file
potentially has an additional function: in the case where debug information is available, but the source file cannot be
found at the specified location, the description will instead display a prompt to the user asking them to locate the file in
question. Clicking it will first attempt a BFS query for matching file names, and display any matches in a pop up menu.
In addition, there will also be a menu item allowing manual location via a file panel in case none of the found items are
correct (as may be the case for development partitions with no indices). In the case where no matches are found at all,
the file panel will be opened directly with no intermediate menu.

Page 10

Breakpoint condition configuration

[Edit breakpoint 71

() Break always

(#) Break on condition: | i==5 |

Save | Cancel |

As mentioned in the breakpoint types table above, right clicking a breakpoint allows configuring it for conditional
execution, which is done via the window pictured above. Here, one can either enable and specify a condition to apply
to said breakpoint, or revert it back to an ordinary unconditional breakpoint. The condition takes the form of an
expression, as detailed in the advanced topics section.

Page 11

Variables View

This view shows the variables that are currently in scope where the selected thread/function is stopped. If no thread is

currently stopped, no variables will be displayed.

B =

= ®H

BEEHHH

E2|

BHEHEH

Variables | Registers

Variable

this

unit

addressSize
subprogramEntry
location

info
inputinterface
outputinterface
_framePointer
currentFrameSection
dataReader
dwarfgd

length
lengthOffset
context
cieAugmentation
cieReader
cieRemaining
error
registerCount
fdeAugmentation
remaining
restrictedReader

frameAddress
rfarfabBila

Value
Ox187h1218
Ox188b3940

4
Oxl18901clO

JO720
Ox187bes4d0
Ox19585078
0x195850d8
Ox79dE8c10

Ox1B87b8fd0
[@ Ox79dE8a..,
false

64

3016

[@ Ox79dE89..,
[@ Ox79dE8a...
[@ Ox79dE8a...
7

0

39

[@ Ox79dE8a...
a7

[@ Ox79dE8a..,

1920672032
Mw]l Baffiogn

| Type

DwarfFile*
CompilationUnit*
unsigned char
DIESubprograms

long long unsigne...

const DwarfFile: F...
const DwarfTarge...
DwarfTargetinterf...
target_addr_t&
ElfSection*
DataReader

bool

long long unsigne...
long long unsigne...

CfaContext
DwarfFile:: CIEAUG. ..
DataReader

long long int

long int

long unsigned int

DwarfFile::FDEAuUG...
long long unsigne...

DataReader

long long unsigne...

FfarfaRilakx

As pictured, the variables are shown with their name, current value and type. In the case of pointer or compound types
such as structs/classes/arrays, they can additionally be expanded to show their data members. When stepping a

thread, any variables whose values have changed in between steps will be highlighted accordingly.

Page 12

Variables can also be right-clicked to select various options:

“ariables Registers
| Variable | Value | Type

this 0x182c9e88 DwarfFile*
unit 0x183dazZ68 CompilationUnit*

addressSize 4 unsigned char
subprogramEntry 0x18428c90 DIESubprogram®*

location 73944 long long unsigne...
info 0x182d7220 const DwarfFile::F...
inputinterface Oxleedc8d8 const DwarfTarge...
outputinterface Oxleedc968 DwarfTargetinterf...
_framePointer Ox71ef0b00 target addr té
currentFrameSection 0x182d1c40 Elfsection*
dataReader [@ Ox71ef0870] DataReader

dwarfé4 false bool

lengt Inspect 64 long long unsigne...

lengt Edit... 3184 long long unsigne...
conty coct oe 084¢c] CfaContext
cieAU wwatch. .. 0960] DwarfFile::CIEAUG...
cieRe copy Value 0948] DataReader

cieRe 7 long long int

error| Format > 0 longint

regis] Add watch expression... 39 long unsigned int

fdea TaTIGn [Ux/Lef093f] DwarfFile::FDEAuUg...

remaining 47 long long unsigne...
restrictedReader [@ Ox71ef0824] DataReader

frameAddress 1908676320 long long unsigne..,

laralr=1=Iriel=Tal CforfobBlod

E rforfobiila

The “Inspect” item opens the debugger's memory inspector at the memory location of the selected variable (to be
described in more detail later).

If the selected variable is in a writable location, the “Edit” item is presented, which opens a window allowing one to edit
its respective value. The type of editor presented will vary depending on the type of variable. Integer and floating point
values will present a free form editor allowing the user to type a new value as seen on the left, while restricted types

such as enums or booleans will present an editor as seen on the right:

] Edit value

[
|

Initial value for 'length’: 64

MNew value:

54

| Cancel

| Save

[] Edit value 7|

Initial value for %' Hypnotoad

MNew value: v’H}fantnad
Leela
Can Fry
Lrrr
Zoidberg

Page 13

The “Cast as” item brings up a window allowing one to specify a different type to treat the currently selected variable
as. For instance, if the current function takes a parameter which is a pointer to a base interface class of some form,
but the user knows that the actual instance that was passed in is a specific subclass, this allows the debugger to view
the variable as that subclass, and consequently show any additional members that otherwise wouldn’t be known.

If the selected variable is an array, then an additional menu item is presented, allowing one to control the range of
elements which is made visible:
| Inspect

Cast as...

Watch...

| Setuisible range..

This can be handy since, e.g. a large array may only have a few elements that are actually of interest at present, and
hunting for said elements in a list that could potentially encompass thousands of items is typically rather tedious and
error-prone. Clicking said item presents you with the following dialog:

[] Set Range I

Current range: 0-999,

Range: |1,46-57,163,99g]

Cancel | Accept

The top line of text indicates the overall bounds of the array from which one can select elements. In this particular
case, the selected array contains 1000 elements overall. The range list accepts a comma-separated set of either
ranges of the form x-y, or individual element indices, as seen above. After clicking Accept, the variables view will only
display the ranges specified for the variable in question.

The “Watch” item allows the user to install a watchpoint at the memory address at which the selected variable is

located. These are similar to breakpoints, but rather than being triggered when a particular line of code is executed,
they instead cause execution to be halted when the corresponding memory location is accessed as configured:

[Edit Watchpoint]

Address: | 0x72945940 |

Length: |_.4 | Type: .-ééad;;-.ﬂ;'r"i.te =

Set Cancel |

As can be seen here, the watchpoint can be triggered either via a read or a write, and one can specify how many
bytes away from the current address can be written to while still triggering the halt.

The “Copy Value” item, as its name implies, simply copies the value of the current variable to the clipboard.

Page 14

The “Format” submenu allows one to specify an alternative format to view the current variable as. For integers, this
allows to switch between signed, unsigned and hexadecimal formats.

The “Add Watch Expression” item allows the user to add a variable to the current function that actually consists of an

expression that is re-evaluated at each step. Unlike in the case of conditional breakpoints, the expressions here can
be of an arbitrary type.

Page 15

Registers View

The registers view shows the values of the CPU’s registers at the current stack frame. Three types of registers are
supported, depending on the target CPU: integer, floating point, and vector. In the screenshot below, all three types
are visible.

ariables Registers .
Register Value ‘*
eip Ox012875e7
2sp Ox7284583c
ebp Ox72945868
eax Ox00000002
ebx 0x01431900
2CH 0x00000000
edx 0x00000002
esi Ox7284653c
edi Ox72946548
Cs Ox001b
ds 0x0023
es Ox00D23
fs Ox0063
gs Ox0023
=4 Ox0023
st nan
stl nan
st2 0
st3 0
std 0
sto 0
sth 0.0264
st7 0
mm0o {0. 0. 0, 0} El
mml {0, 0,0, 0%
mmz2 {0, 0, 0, 0}
mm3 {0, 0,0, 0}
rmmd {0, 0, 0, 0}
mmS {0, 0, 0, 0}
mme {0x68Be, Ox648b, Ox79db, Oxd8... |
_rmmT T T O B

Right-clicking a register brings up a context menu that allows various options to be selected, depending on the type of
register. For integer registers, this comprises an Inspect item which, as in the case of variables, brings up the
inspector, using the value of the current register as the target memory address.

Page 16

For vector registers such as mmO0-mm7 above, the context menu allows one to specify the type of packed values
currently stored in the register, i.e. the various sizes of integer, or floating point types, as this can vary depending on

which instructions are currently being used to manipulate them, as shown below:

aLrs

LT

mm-
mm

mma2
mm3
mmé
mms
mmeé

B-bit integer
v 16-bit integer

32-bit integer

64-bit integer

Float

Double

{0, 8, 8, 0}

{00,003
{00, 0,63
{0, 0, 0, 0}
{0, 0, 0, 0}
10,0,.0,:0}
{0, 0, 0x7300, OxdBa2}

Page 17

Output Capture View

The output capture view displayed at the bottom of the team window serves the purpose of showing console output

from the target program, as shown below:

loading program: "generated/objects/haiku/x86/debug_l/apps/webpositive/MebPositive" ...
team: 10029, thread: 10029
debugger for team 10029 started...
debugger for team 10029 created and initialized successfully!
DwarfManager: :File: :L
DwarfManage iLoad (
DwarfManage . ("/boot/common/1ib/1ibwebcore.so”): no .debug_info or .debug_abbrev.
DwarfManage : tLoad ("/boot/conmon/1ibs1ibwebkit.so"): no .debug_info or .debug_abbrev.
DwarfManager: : iiLoad("/boot/system/lib/libstdc++.s0"): no .debug_info or .debug_abbrev.
DwarfManager: (Fil ("/boot/system/1ib/libbe.so"): no .debug_info or .debug_abbrev.
DwarfManager: : ("/bootssystem/1ibs/libnetwork.so"): no .debug_info or .debug_abbrev.

(

(

(

(

(

oad (" /boot/conmon/1ib/libwtf.s0"): no .debug_info or .debug abbrev.

DwarfManager: : i "/boot/system/1ib/libtracker.so"): no .debug_info or .debug_abbrev.

DwarfManager: . i :Load (" /boot/system/lib/1ibtranslation.so"): no .debug_info or .debug_abbrev.
DwarfManage
DwarfManager:
DwarfManager: :

1"): no .debug_info or .debug_abbrev.
g
L.1")

"/boot/common/1ib/libjavascriptcore.so"): no .debug_info or .debug_abbrev.

no .debug_info or .debug_abbrev.
no .debug_info or .debug_abbrev.

[stdout
[%] stderr

| Clear |

Captured output is colored based on which descriptor it came from ; black represents stdout, while red is used for
stderr. Which descriptors the view shows output from can be individually toggled as needed, depending on what is
currently of interest. Furthermore, if the target program is known to emit no console output of interest, the view can be

collapsed entirely via the splitter above it.

Page 18

Main Window Menus

Some functionality is also accessible via the menu bar, as shown below:

__'[}eh'tiggé*ﬁ_ Team Edit Tc

Start new team...
_Show Teams window...

Team Edit Tools Tools
| Restart — | save _c-:lgbug repaort
Close Aur| W | Inspect memaory A |
_ | Ewvaluate expression aulE |
Settings... el T e SN B s

Start new team

This item offers the same functionality as the similarly named button
previously described in the Teams window. The new team will be
started in a separate debugger window from the current one.

Show Teams window

As its name implies, this brings the previously described Teams
window up, in case an encountered situation might require attaching
to another running team.

Restart

Resets the currently attached team into an initial state as if it had just
been freshly launched.

Close

Terminates the current debugger window. If the team in question is
still running, a dialog will ask if the debugged team should also be
terminated or simply detached, or the close request can be ignored
entirely in case invoked accidentally.

Settings

Opens the team settings window. This allows one to adjust
image-related break conditions, signal behavior, and
language-specific settings. For more details, please see the Team
Settings window section of this guide.

Save debug report

Saves a report detailing the current team’s state. This is functionally
identical to the reports that can be saved when a program crashes
otherwise.

Inspect memory

Opens the memory inspector window. This allows one to view and
edit the contents of memory in the target team. For more details,
please see the Inspector window section of this guide.

Evaluate expression

Brings up the expression evaluation window. This allows one to
evaluate the results of expressions in a C-like syntax. For more
details, please see the expression evaluation section in Advanced
Topics.

Page 19

Team Settings Window

The settings window, which is accessible from the Team menu, allows one to adjust several different types of
advanced settings, which are currently split into three categories.

Signals

Team settings
Signals Images Exceptions

Default disposition: | Stop at receipt

Custom dispositions

' Signal ' Disposition '
SIGHUP Stop at signal handler
SIGWINCH Ignore

[Edit signal disposition 71/

Signal: | SIGWINCH - Dispnsitiun:'ignnre =

Save |

Cancel |

Add... | - Edit...

| Remove |

_ Close

The signals tab allows the configuration of how the debugger responds to signal-related events in the target team.

Three possible dispositions can be configured:

Ignore This is the default behavior, and essentially indicates that execution should
proceed as usual when a signal is received. Note that certain types of critical
signals will result in execution being halted regardless if the application does not
handle them in some way, such as SIGSEGV.

Stop at receipt This causes execution to be halted immediately when the signal is slated to be
delivered to the target team. The thread’s stop status in the Threads tab will
indicate the signal that was received.

Stop at signal handler If the target team has installed a signal handler for the signal in question via
signal() or sigaction(), this causes execution to stop at that handler. Note that if
no handler has been installed, the behavior will fall back to that of the “Stop at

Page 20

receipt” option.

The “Default signal disposition” menu field allows the global default to be configured from the above options. In
addition, the list in the lower half of the tab allows per-signal overrides to be set up in addition to the global default.
This is useful if, for instance, one is only interested in one specific signal, or if most signals are desired to stop
execution, but a specific one may frequently occur, but is uninteresting. Choosing to add or edit a signal brings up a
window allowing one to choose both the target signal, and the desired disposition. In the case of editing an existing
row, the choice of signal will be locked to that of the chosen row.

Page 21

Images

The Images tab allows one to specify that execution should be halted when new executable images are loaded into
the target team’s address space, typically via the load_add_on() system call. This allows the user to access functions
within the newly loaded executable image, and configure breakpoints before any of its code is actually executed. By
default, this behavior is unconditional, which is to say the debugger stops for any image load. However, the Types
menu allows one to also choose to filter the images, so only those matching particular names cause a halt, which can
be handy for programs that load many libraries dynamically, but only a handful are of interest:

[] Team settings
S!gn;ﬁls Images Exceptions
[%| stop when an image is loaded

Types: Cué.tum

iiﬁaﬁc.an

Image: |

Add Remove

: Close

In this case, one can add or remove image filenames to the list, which in turn causes threads to stop only if a newly
loaded image’s name matches.

Page 22

http://www.haiku-os.org/legacy-docs/bebook/TheKernelKit_Images.html#load_add_on

Exceptions

The exceptions tab is specific to the C++ language, and may not necessarily always be visible in the future, when
support for other languages has been added.

[1 Team settings 7]

Signals Images | Exceptions

| Stop when an exception is thrown

Stop when an exception js caught

Close

Currently, this only allows configuring the debugger to halt execution when a C++ exception is thrown, though in the
future there is planned to be support for halting execution at the point where an exception is caught as well.

Page 23

Inspector Window

Choosing to inspect a variable/register, or invoking the aforementioned “Inspect memory” menu item brings up the
memory inspector, whose primary purpose is to allow one to look at the contents of the target team’s memory. This
can be useful when troubleshooting various kinds of bugs involving what appears to be data corruption, as seeing the
full contents of the relevant block of memory can potentially reveal patterns or clues that might point the way to the
culprit. An example of the window is pictured below:

[1 Inspector 1_||
Target Address: | 0x71f4def0 | | = | | = |
Hex Mode: | 8-bit integer - Endian Mode: | Little Endian -| Text Mode: | ASCIl -
71f4ddSc [9c dd 4 71 51 06 d3 0L 04 O 4c 00 cc dd ¥4 71 9c dd f4 71| ...qQ.....L....q...q |4]
71f4dd70 | 1a a7 d3 G1 03 60 00 B0 a0 fb d3 0L Sc dd 4 71 22 Ga 00 00| B e q". .
71fadda4 | fc 9e f1 01 d8 dd 4 71 6c 04 d3 OL 7f de f1 OL b6 be d3 61 | it b
71f4dd98 | 00 00 00 G0 B0 0O 00 00 5 e5 d2 01 70 9 d3 61 00 00 00 00 | o
71f4ddac | 00 00 00 G0 Ge e5 d2 O1 4c 27 4d OO GL O GO GO 0O 6O 00 00 | 1 A
71f4ddco | 00 00 00 GO GO 00 00 00 04 fO 4c 00 a0 fb d3 01 7c 62 d4 OL | Lol
71f4ddd4 | 30 22 4d G0 98 de 4 71 05 08 d3 01 30 22 4d 00 b6 be d3 OL | 0"M....q....0"M. ...
71fadded | 7c 02 d4 O1 7c de 4 71 04 O 4c 00 c4 5 4c 00 d8 fc 4c 00 | |...|..q..L...L...L
71f4ddfc | 50 02 4d 00 b0 07 4d 00 40 Od 4d 00 70 12 4d 00 b0 17 4d 0O | P.M...M.@.M.p.M. . .M

71f4del0 | e0 1c 4d 00 30 22 4d 00 cB 27 4d 00 90 2d 4d 00 8c 32 4d 00| .. M.Q"M. . 'M..-M..2M,
T1fddezd | cc 37 4d 00 14 3d 4d 00 54 42 4d 00 84 47 4d 00 04 4d 4d OO | . 7M. . =M. TEM. .GM. .MM,
71fdde38 | Bc 52 4d 00 30 58 4d 00 9c 5d 4d 00 ed 62 4d 00 01 GO 00 OO | 1RM.OXM. . M. .bM.....
71lfddedc | 00 60 13 00 la chb fa 00 d6 2f d3 01 98 de f4 71 cc @6 d3 G1 | .7....... ;T s R

71fddest | fo 9e f1 01 30 22 4d 00 Oa OO0 00 00 fO dd f4 71 68 7e 4d QO |0"M........ gh~M.
71f4de74 | G2 G0 00 00 OO0 00 OO0 00 83 a4 d3 0L a0 fb d3 0L 70 f9 d3 Q1 | R
71f4deB8 | a8 de f4 71 ¢7 7a d3 01 70 f9 d3 0L G2 13 00 80 OB df f4 71| ...g.2. .p... v vv q
71fddeSc | Ba 7a d3 01 a0 fb d3 01 0GB D2 d4 0l @8 df f4 71 fO dd d2 01| z............. [+ B

71fddebo | 70 9 d3 01 02 13 00 80 08 df f4 71 a0 dc d2 01 00 GO OO QO | p.... ...\ [+ P
71fddecd | 00 GO 00 00 OO OO0 OO 00 ea c7 f3 0L 48 69 00 02 00 89 15 0L |ov0 W Hisiiis =
71fddeds | 08 df f4 71 b2 ca fa G0 1 0D G0 00 3c e5 f4 71 44 e5 f4 71| ...q........ <..q0..q |
71fddeec | GO 00 00 OO0 GO0 OO0 OO 00 OO G0 00 G0 GO GO GO G0 a® fb d3 01 | ... M............... v

Writable: Yes . Edit _

The inspector loads memory one block at a time, where a block is currently specified to be the size of a hardware
page (4KB on x86 systems). As can be seen above, the actual memory view is divided into two sections, one of which
shows the contents in a hexadecimal format. On the far left is the starting memory address of the each respective line.
The target address within the block, as seen in the text control at the top of the window, is highlighted in red in this
view. In this particular case, the address in question actually corresponds to the “length” variable that was highlighted
in the Variables view section earlier in this guide, and as can be seen, its value of 64 (aka hex 0x40) is located at the
target address as expected.

The smaller section on the right of the view shows the same data in printable ASCII format where possible. If a

memory value does not correspond to a printable character, it is replaced with a “.’. Various aspects of the hex and
text sections of the view can be configured via the menu fields shown immediately above it:

Page 24

'32-bit integer - Little Endian -

<None> r vLittle Endian nr L <None> N
B-bit integer Ao

Big Endian __HL_T_E{ ¥ ASCI Au| A
16-bit integer Au
¥ 32-bit integer Au

B4-bit integer Au

FT T N i

The hex mode menu allows one to choose between hiding the hex view entirely, or adjusting the hex block size
displayed. Previously, the view was in 8-bit mode. Selecting 32-bit as shown above results in the following display
instead:

—

[l Inspector [

Target Address: | 0x79d68b10 | [P ——
Hex Mode: | 32-bit integer - Endian Mode: | Little Endian - Text Mode: | ASCIl -
REATATLT L LT T - G T T e L L fT Ll TR R B i LS LI B Rpe e [e LWL R N L [P I YT DL .J..
79d68a08 01426782 186a2e54 01459744 79d68a08 014267bf | ...y.gB.T.i.D.E....y.gB. |~

19433900 00EEO007 79d689ec 0142668e 000ODOS 0145944 | ..C........ y.fB.....D.E.

79d68a28 0OOCOO0S 186a3lec 00ODOCES 1943bdss 1943a80 | (..y.....17....... £ 5L

1870a73c Glc6alcO 0OBOGOOD DOOOOEEO 02546420 1943bd90 | <.p.. .. \.vv..... dT...C

79d68a48 01427379 00OOEO0O 0OOOCEO 727b21lc 0OOOOOOO | H..yysB.......... i

00000004 0EEC002f 727b2120 0OODEECO 186a2e54 18805092 | .../ ... 1{r....T.i..[..

0000002 HOOCO0D0 0OE0E02f DOODEEC0 79460004 Ol425ade | Vs y.ZB.

00000007 BEE0000 18805130 0OO0EECO 0OOOEE00 00000807 | Q..

00000000 01420004 18805119 00000CCh 00000GLb 00OOOOOT | Bila s

18805b91 00EE0d17 0OEGO0D 0OOOLEFO 0O0ODE0E 18620004 | .[.............oovvi.. i

79d68abg 0142487b 0OEOEOOO 18805129 0OOOOOT 00000O0O | ...y{HB.....)Q

00000007 BOEE0000 79d60004 0OODEGEO 0O000BOE 72762120 | Yoroiiiin Hr

00000000 0170168c 00G11440 0OODE0CO 79d68hls OL6F9397 | BE G a y..o0.

187be640 00011440 OOOO0O0D 194306F0 554cded7 18ef0a0 | @.{.@......... C.GNLU. . ..

0000002 EEOCC000 BEE00027 DOBOE0C0 0OOEGhcS CODODEOE | /... ... T
00000040 BO0E0000 187bafdo 0ooDE0ES 187b121e 00011440 | ENEN. A— {e... |

00000000 B17b8500 02524000 0OOD0CO 79d68h98 OL6F32b8| (Ehe e y.20.

187b1218 188b3940 0OGO0004 18901cl0 0OOLTWJO 00000E0O | ..{.@9.......... i

187be640 19585078 195850d8 79d68cl0 00OOOEOO OL6F3250 | @.{.xPX..PX....y....P20.

00011440 HOOCO000 79d68b98 01613104 1879d198 0000000 | @.......... y.la...y.....
d6ebes | 79d68bb8 187be40 79d68clc G17b8500 79d68chs Ol62fa52 | ...ye.{....y..{....yR.b. ||
odashat | 187b1218 188h3940 00000004 18901c10 00011440 00000000 | .. {\@9.......... Bl vl

Writable: Yes | Edit

This functionality is useful if one is looking at specific data types of a well known size, such as pointer addresses.

The endian mode menu lets one choose whether to view the data in big or little-endian format. By default, this
chooses the architecture’s native endian orientation (in the case of x86{-64}, little endian as seen here), but in some
circumstances one may be viewing data that’s stored in memory in an alternative format. The most commonly
encountered example of this that one may see in ordinary application code is when dealing with network code.
Frequently, internet addresses and other network-related pieces of information are specified as being stored in big
endian format. On x86, this would mean that a raw memory view of them would cause their bytes to be in reversed
order from the CPU’s native format, resulting in the value being completely different from what one would expect.
Switching orientation allows the data to be reinterpreted such that it appears as its normal value.

Page 25

Finally, the text mode menu allows one to show/hide the text section of the display. This may be extended in the future
to allow interpreting the data in a wide character format such as UTF-16 or the various extended 8-bit character
codepages.

The controls along the top of the window allow one to manipulate the location of memory currently being shown. The
target address field allows explicitly specifying a new target address as either a plain numerical address or a
mathematical expression. The left and right buttons adjacent to it allow navigating to the next or previous memory
block. It should also be noted that when the memory view has input focus, the usual arrow, page and home/end keys
can be used as an alternative means to navigate within the current block.

Page 26

Editing Memory

The final piece of functionality afforded by the inspector window is to actually edit the contents of the target block,
assuming the address in question points to writable memory in the target team. As an example of memory where this
would not be the case, most executable code such as the shared libraries or the executable image of the target itself
are usually mapped as read-only. In the lower left of the window, one can see an indicator which specifies whether the
current block is writable or not, as is the case here. If so, one can use the Edit button in the lower right to switch the
inspector into editing mode, which results in it adjusting accordingly as seen below:

[1 Inspector

Target Address:

Hex Mode:

Ox71fddeel

B-bit integer

Endian Mode

Little Endian

71faddas
71faddsc
71f4dd7a
71faddad
71fdddos
71faddac
71faddeco
71faddd4
71fdddes
71faddfc
71f4deld
71fdde2d
71fdde3B
71fddedc
71fddesn
71f4de74
71f4dess
71T4dedc
71T4debo
71fddecd
71fddeds

15
dd
arl
e
a0

Qe
f4
d3
fl
(6]
e}
6]
4d
d4
4d
4d
4d
ad
13
fl
6]
f4
d3
d3
6]
f4

8c

o3
da
6]
Qe

= 1]
ic
bo
30

30
la

66!
c7
al

oo
b2

fa

0o
T4
oo
dz2
0o
T4
fa
4d
4d
4d
4d

4d
oo
d3
d3

(66!
fa

al
04
al
GC
cS

d3
ac
d3
d3
dz2
4d
ac
d3
ac
4d
4d
4d
ad
d3
G|
d3
d3
d4
f4
f3
e]]

04
cC
Qc
7f
70
a1
al
30
cd
70
a0
a4
ad
98
fo
al
2
(03
al
43
3c

o
dd
dd
de
fo
oo
fh
22
f5

ac
fa
f4
fl
d3
oe
d3
4d
ac
ad
ad
4d
ad
fa
fa4
d3
oa
f4
dz2
(66!
f4

co
9c
22
b&
(6]¢]
00
ic
b&
dB8
bo
ac
04
01
cC
63
70

dd

Qa
be
[&]1]
[&]]
02
be
fe
17
32
ad
[&]1]

e
fo
df
dd

a9
g5

T4

6]
d3
(6]
e[}
d4
d3
ac
4d
4d
4d
(6]

4d
d3
T4
dz

15
f4

LR = N = |

Writable: Yes

i Comrnit |i

Revert

Here, we have modified the value that was stored at the target address, and the window will highlight all changes
made. The Edit button has been replaced with the Commit and Revert buttons, which allow one to either write the
changes back to the target team once satisfied, or to simply discard all changes and leave the block in the state it was

in before edit mode was enabled.

Page 27

Advanced Topics

Several more advanced features are also available in the debugger, which are described in further detail in this
section.

Expression Evaluation

Several of the features described in this guide require the use of what is referred to as an expression, such as
conditional breakpoints. These effectively consist of a statement in a subset of the target language that results in a
value. For basic mathematical operations, all the C/C++ mathematical expressions are supported, as are most of the
bit operations, with the exception of bit shifts. Parentheses to enforce precedence are likewise supported. This subset
of functionality can be handy if circumstances require one to perform some simple calculations to determine e.g. a
memory offset to inspect. Note that variables in the context of the current stack frame can also be used in such an
expression.

In addition to basic mathematical expressions, however, the expression evaluator can also handle expressions more
complex types, as well as various operations upon them. For instance, if the variable in question is a pointer, one can
dereference it as one would in the actual language. Furthermore, if the pointer refers to a structure or class, one can
refer to member variables within said objects as one normally would, i.e. via the . and -> operators. Typecasts are
likewise supported. When used in the context of a conditional breakpoint, this allows one to construct breakpoints that,
for example, only trigger if the value of a particular member of an object within the target function matches a specific
value (or, alternatively, does not match an expected value). For the conditional breakpoint case, the evaluation is
concerned primarily with whether the value returned is true or false. Note that an expression evaluation failure, i.e. due
to a syntax error, or a failure retrieving variable value will always cause the breakpoint to trigger as a safety
precaution.

Page 28

Outside of the context of conditional breakpoints, such expressions can also directly return objects of arbitrary types.
When using the expression evaluation window or a watch expression in the variables view, such evaluation results are
displayed as additional rows in the list of variables. This can have a number of uses: for example, one may know the
memory address of a variable that one wishes to keep track of, but which isn’t visible in the context of the current
stack frame, such as an application object. In such a case, one can add a watch expression which casts said memory

address to the appropriate type, and consequently have it appear in the variables view with each step, as
demonstrated below:

_Frame
Ox7a4fB080
Ox7a4f80a0
Ox7a4f84a0
Ox7a4f8500

P
OxlEebad3
Ox26d2227

Ox27bclcft
Ox27c033a

Function |
StyledEditWindow:: MessageReceived(BMess. .,
BLooper:DispatchMessage(BEMessage*, BH...
BWindow::DispatchMessage(BMessage®, BH...

Bwindow::task_looper{void) + Ox326

0x7a4f8530 Ox26d3606

ELooper: taskD (void*) + 0x3a3

Variables Registers
Variable Value | Type
this Oxl826ead8d StyledEd...
message 0x1835b840 BMessa...
B (StyledEditApp*)0x7206b0f0 _ 0x7206b0f0 StyledEd...
BApplication [@ 0x7206b0f0] BaApplica...
fOpenPanel 0x18250f48 BFilePan...
fopenPanelEncodingMenu 0x18280cf8 BMenu*
fOopen&sEncoding 0 long uns...
fWindowCount 1 longint
fiextUntitledWindow 2 longint
fBadArguments false bool

Page 29

Special System Type Handling

Several APIl-provided classes are used quite heavily throughout the system. As a consequence, one will quite
frequently run into situations where it can be useful during the course of debugging to be able to see the contents of
one which is currently being dealt with. This is in fact possible, provided the target application has been loaded with a
debug build of libbe. In future stable Haiku releases, this will be more easily provided via a debug information
package, but as of the moment this requires building it yourself from the Haiku source tree.

Currently, the supported classes for this feature include BMessage, BList and BODbjectList. Under normal
circumstances, debug information would merely show you the low level class structure, as with other structs within
your own program. For these types however, the debugger is capable of reconstructing them from the target team’s
memory, and instead showing their contents.

As an example, the screenshot below illustrates this feature for the contents of the B_ MOUSE_MOVED message
which is used to trigger the BView::MouseMoved() API call:

“ariables Registers
| Wariable _ _ Walue | Type
this 0x18783958 BWindow#
B message Ox18775fe8 EMessage*
what Ox5f4d4dse long unsigned int
when 549814745 long long int
buttons 0 longint
be:delta = -25 longint
be:delta vy 21 longint
modifiers 0 longint
B screen_where [@ 0x18a0B8eda] BPoint
}ec 343 float
y 354 float
_view token 32 longint
B where [@ Ox1B8a0Befg] BPaint
}ec 243 float
y 254 float
E be:view where [@ O0x1B8a0Bf0e] BPoint
H 192 float
Y 5186 float
be:transit 0 longint

Page 30

http://api.haiku-os.org/classBMessage.html
http://api.haiku-os.org/classBList.html
http://api.haiku-os.org/classBObjectList.html
http://api.haiku-os.org/classBView.html#ac8b20516e42bab2f1eeb130e2432bde0

For the case of the BList and BObjectList classes, similar behavior is used to present those respective classes as if

they were arrays, as shown below:

Variables Registers
| Variable ' Value | Type
B this 0x195cac50 Cdmpnund‘Jalueche*
ValueMNode [@ 0x195cac50] “ValusMode
fType 0x191a0200 CompoundType#
B fchildren [@ 0x185cac74] BObjectlist=CompoundvalueNode:: Child=
Capacity 7 longint
B [0] 0x1960cEl0 CompoundvalueMode:: Child#
ValueMNodeChild [@ 0x1960cE10] “alueModeChild
fParent 0x195cac50 CompoundvalueMode#
B fMame [@ 0x19680c62c] BString
fPrivatebata "Bapplication” char#
[1] 0x1960c5ed CompoundvalueMode:: Child#
[2] 0x1960c5b0 CompoundvalueMode:: Child#*
B [3] 0x1960c580 CompoundvalueMode:: Child#*
ValueModeChild [@ 0x1960c580] WalueModecChild
fParent 0x185cac50 CompoundvalueModet

Bl fMame
fPrivateData
(4]
[5]
[B]

[@ Ox1960c59¢]

"fOpenf&sEncoding”

0x1960c550
Ox1960c520
Ox1960c4f0

BString

char#
CompoundvalueNode:: Child#*
CompoundvalueMode:: Child#*
CompoundvalueMode:: Child#*

As can be seen here, for a BObjectList, the contained type information is available, and as such, the individual array

elements are exposed as their actual type. In the case of BList, however, this is not known, so the latter simply

exposes an array of pointers. Given that the user knows what the type actually is however, typecasting can be used
on the individual elements in order to present them appropriately.

Page 31

Return values

When stepping through code, it is not uncommon to step over a statement which contains a nested function call
returning a value used by the remainder of the statement. As such, it would be nice to be able to see the results of
such calls as one steps over the statement rather than having to step into each one individually in order to determine
this. The debugger can in fact support this capability, as illustrated below:

. while (dataReader.BytesRemaining() = @) { currentFrameSection 0x4388b90
/¢ length B gccdEHFrameSection true
bool dwarfé4; dataReader [@ 0x72d6Eb598]
TRACE_CFI_ONLY (off_t entryOffset = dataReader.Offset();) dwarfe4 true

» uint64 length = dataReader. ReadInitiallength(dwarfsd): length 43460685800584800
TRACE CFI("DwarfFile:: UnwindCallFrame(): offset: %" B PRI ngthoitser 11670135211 2901 223

", length: %" B_PRIdE4 "\n", entryOffset, length); el CELEESLEREELE L
- DataReader::BytesRemaining(void) returned 264

if (length > (uint64)dataReader.BytesRemaining(})
return B _BAD_DATA:

Note that this capability is currently only supported for full function calls ; calls that have been inlined are not yet able
to be handled in this way.

Separate Debug Information Files

The ELF binary format used by Haiku allows for the possibility of an executable’s debug information file to be stored in
a separate file from the executable itself. This capability is supported by the debugger as well, and under normal
circumstances will be handled transparently. If, however, the debug information file cannot be located, then the user
may be prompted for its location. In the event that the executable in question comes from a package, it is potentially
possible that the debug information is available in a separate package as well. This is currently the case for the
command line tool ‘sed’ and several other packages in the HaikuPorts repository. Should such a situation be detected,
before prompting the user, the debugger will first search the package repository to see if a matching debug information
package can be found. If so, the user will instead be prompted if they wish to install said package, and the situation
will be handled automatically from there.

Page 32

